
Sustainable Water Management Initiative / Water Management Act

Key Concept #1: Standard Conditions

- Water supply protection
- Wetlands monitoring
- 65 RGPCD
- 10% UAW
- Seasonal irrigation limits
- Water conservation

Key Concept #2: Baseline

- One of several key thresholds for determining what the permitting process will require
- Generally recent use (03-05) plus 5% or registered vol
- For most Neponset communities, baseline is less than current allocation, but more than current use

Key Concept #3: Ground Water Category

• Another key threshold that defines what is required

- 1,400 sub-basins across the state (~30 in Neponset)
- Ratio of "natural" August flow and actual withdrawals
- Categories: 1 (very healthy) to 5 (very impacted)

Key Concept #4: Tiers

- What you have to do (i.e. your tier) depends on your GWC and the volume you request relative to your baseline
- Requests below baseline must "minimize existing impacts to maximum extent feasible" in GWC 4-5, and just comply with standard conditions in GWC 1-3

Tiers Continued

Requests for more than Baseline must:

- "Minimize existing impacts to the greatest extent feasible," and
- "Mitigate impacts commensurate with impact from additional withdrawal [above baseline]"

Tiers Continued

Requests over Baseline that cause "backsliding" or in GWC 5, must:

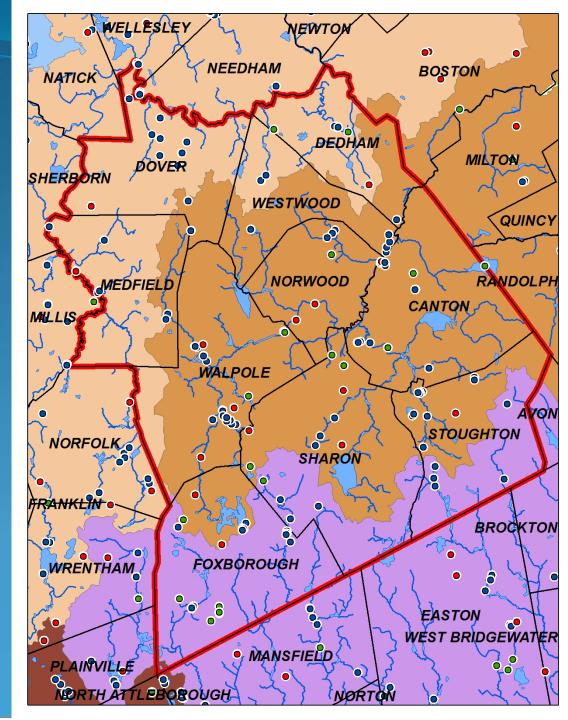
- "Demonstrate no feasible alternative source that is less environmentally harmful" [and if none...]
- "Minimize existing impacts to the greatest extent feasible," and
 - "Mitigate impacts commensurate with impact from additional withdrawal"

Minimization and Mitigation

Mostly similar activities with different levels of accounting rigor and different due dates

- Water conservation
- Stormwater recharge
- Wastewater recharge
- Sewer I/I reduction
- Source optimization
- Alternative sources
- Habitat restoration

More Details on SWMI


www.mass.gov/dep/water/resources/swmi.htm

- Interactive map
- Links to key documents and details

www.mass.gov/eea/air-water-climatechange/preserving-water-resources/sustainable-watermanagement

Process documents

Neponset Water Management Act Pilot Project

Special Recognition to:

- Eileen Commane Dedham Westwood Water District
- Ian Cooke, Steve Pearlman Neponset River Watershed Association
- Martin Pillsbury, Julie Conroy, Tim Reardon, Armin Akhavan – Metropolitan Area Planning Council
 - Blake Martin, Anthony Zerilli, Mel Higgins Weston & Sampson Engineers

Neponset WMA Planning Project

- Water Demand and Efficiency
- ♦ Wastewater and I/I
- Optimization and Alternative Sources
- Stormwater
- Minimization and Mitigation Options Summary

Components of Water Use

The projections were made by estimating water use in four categories:

- 1. Residential
- 2. Industrial and Commercial
- 3. Municipal, Institutional, and Other
- 4. Unaccounted-for Water

Residential Water Use

Projections based on population and households

-STOUGHTON

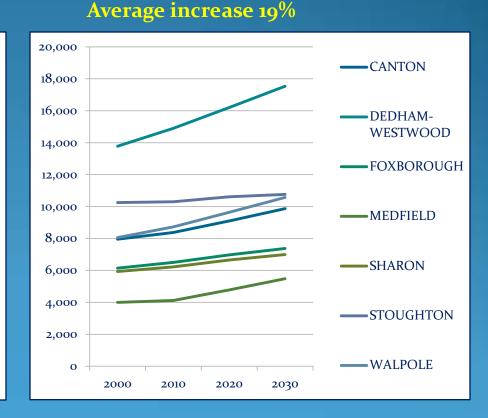
-WALPOLE

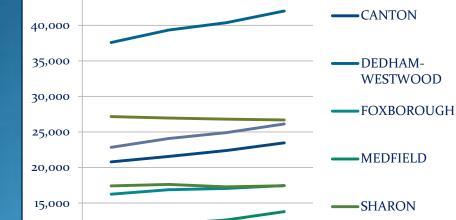
Population 2000-2030

45,000

10,000

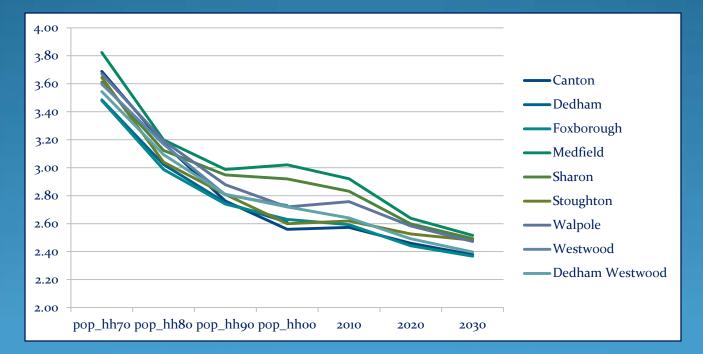
5,000


0


2000

2010

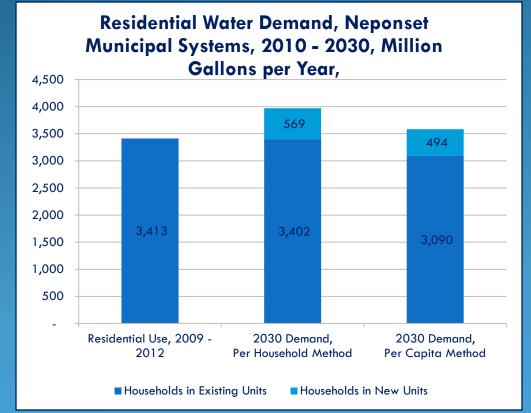
Average increase 5%



2020

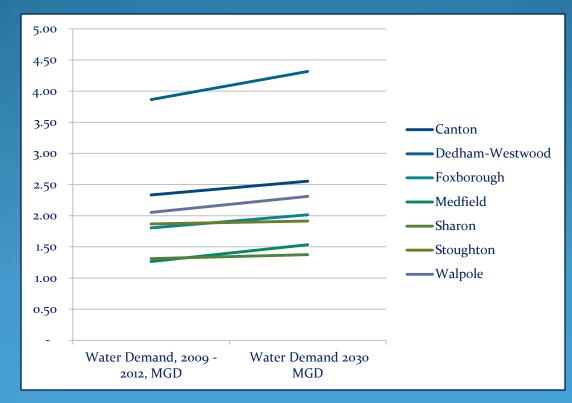
2030

Residential Water Use


As households grow faster than population, average size of households size decreases. This is a long-term trend.

With fewer people in each household in 2030, water demand grows more moderately

Residential Water Use


2030 Water Demand is estimated two ways, based on population and households, existing (2010) and new. These are then averaged.

The average increase for 2030 residential water demand is 11% for all eight Neponset towns

Total 2030 Projection

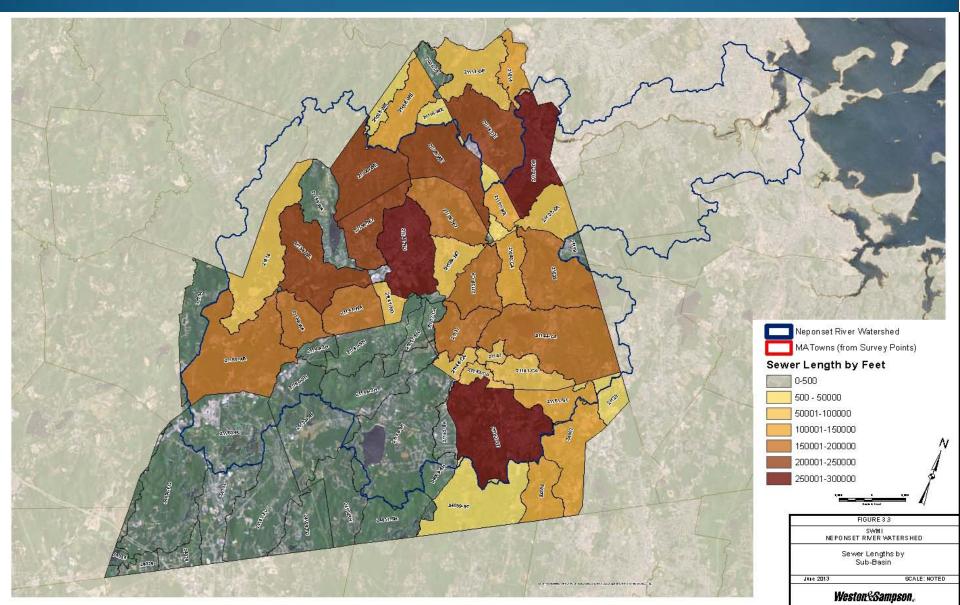
• Total projected demand for the eight towns increases from 14.5 MGD to 16.1 MGD

Infiltration & Inflow (I/I):

Extraneous flow that enters the sewer system through either direct illicit discharges to the sewer system and/or imperfections in the sewer infrastructure.

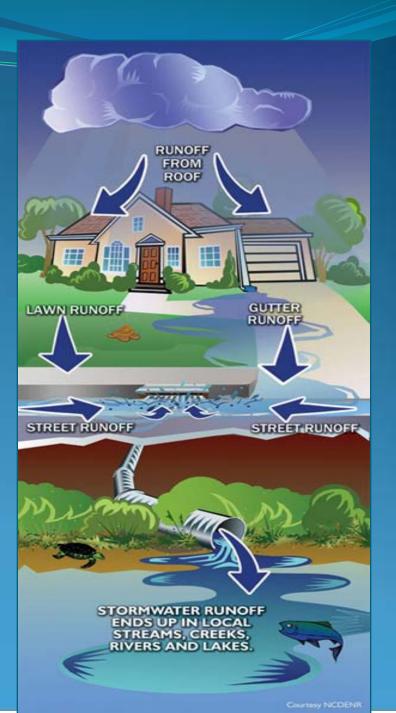
Possible Sources for Infiltration (Groundwater)

- 1. Leaking sewer mains,
- 2. Leaking sewer infrastructure,
- 3. Leaking sewer connections, or
- 4. Leaking Joints.

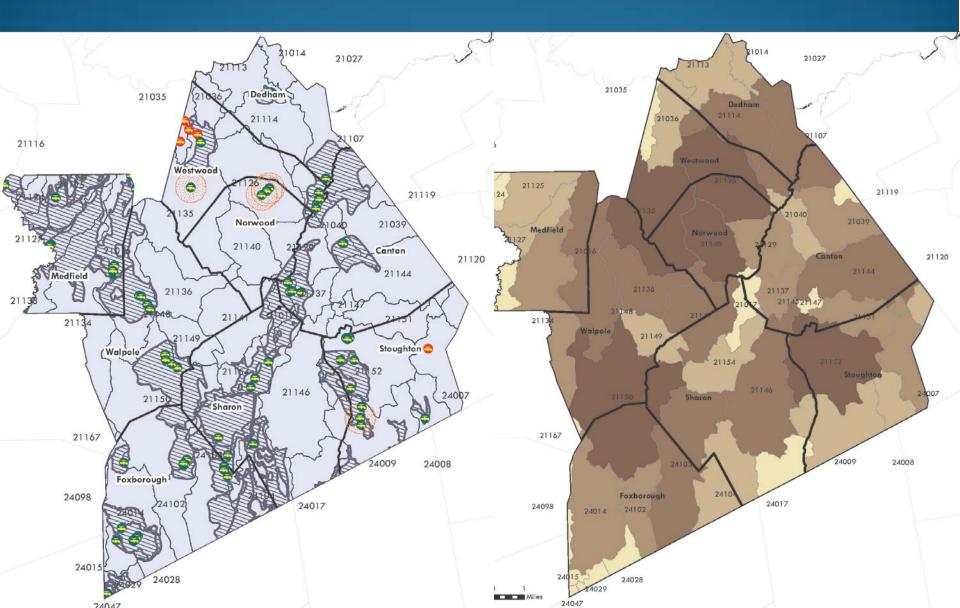

Possible Sources for Inflow (Stormwater)

- 1. Cross connections with storm drains,
- 2. Illicit discharges (sump pumps, roof down spouts, etc.),
- 3. Leaking Sewer Infrastructure (manhole covers, etc.).

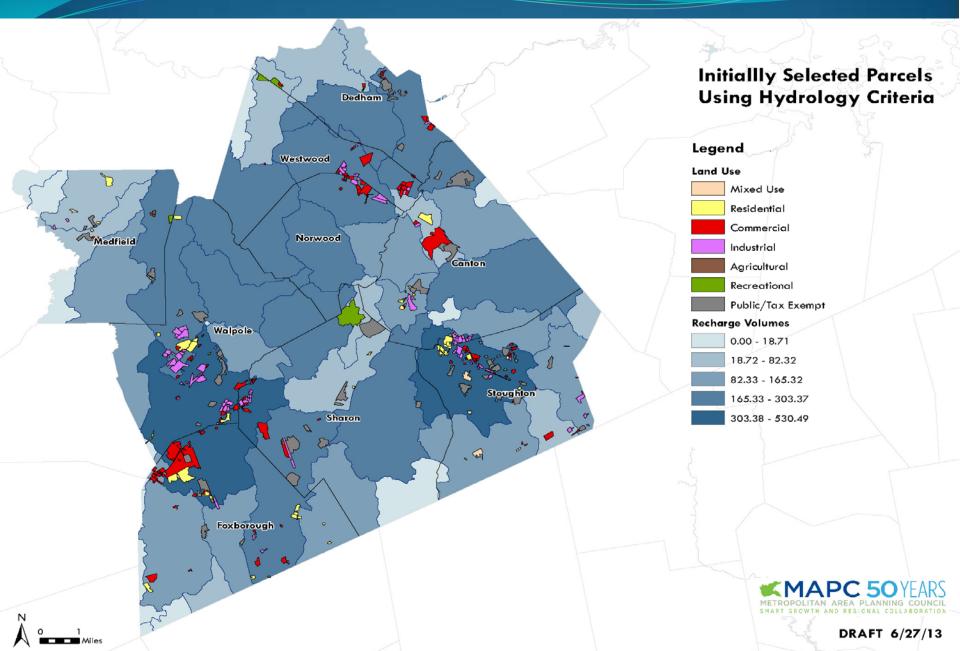
Average I/I Removal Coefficients

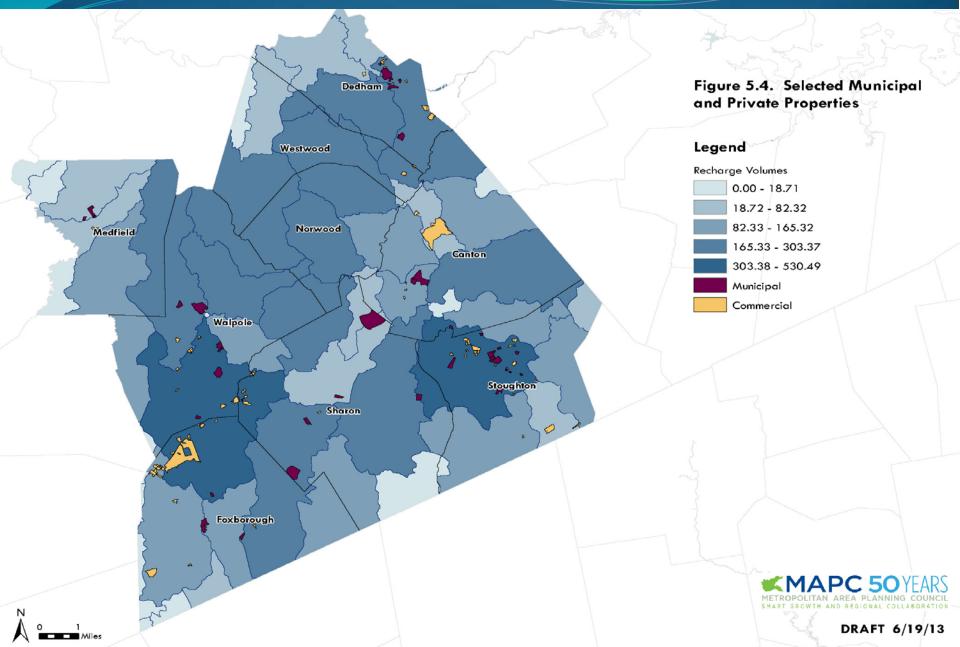

Average GPD I/I Removed per Linear Foot of Sewer Investigated and Rehabilitated							
		Sewers	Sewers	Estimated Average			
		Inspected	Rehabilitated	Infiltration Removed	GPD Removed/LF	GPD Removed/LF	
Town	Calendar Year	(LF)	(LF)	(GPD)	Inspected	Rehabilitated	
Stoughton	2006	26,141	4,364	48,483	1.85	11.11	
Stoughton	2007	23,246	6,109	15,708	0.68	2.57	
Stoughton	2008	29,992	3,417	47,349	1.58	13.86	
Stoughton	2009	55,283	11,088	12,247	0.22	1.10	
Stoughton	2010	20,105	7,249	4,471	0.22	0.62	
Stoughton	2011	51,914	3,193	17,340	0.33	5.43	
Stoughton	2012	63,293	10,501	21,190	0.33	2.02	
Stoughton	2013	29,046	9,214	11,353	0.39	1.23	
Walpole	2007	24,500	14,625	150,960	6.16	10.32	
Walpole	2008	63,850	14,400	33,227	0.52	2.31	
Walpole	2009	58,225	8,465	19,989	0.34	2.36	
Walpole	2010	42,302	2,600	867	0.02	0.33	
Walpole	2011	26,900	13,516	53,151	1.98	3.93	
Walpole	2012	61,632	19,613	10,178	0.17	0.52	
AVERAGE		41,174	9,168	31,894	1.06	4.12	

Sewer Lengths by Subwatershed



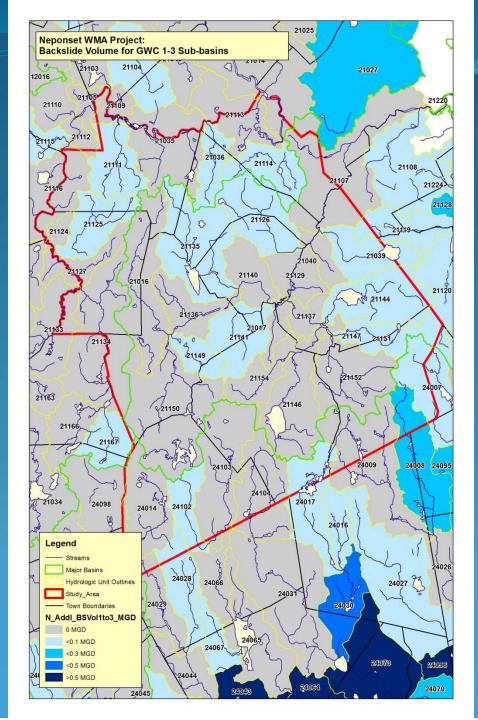
Recharge - Benefits


- Keeps water local
- Replenishes groundwater
- Supplies drinking water sources
- Pollutant treatment


Existing Conditions

Site Selection

Ranking



Results

	INITIAL SIT	E SCREENING	FINAL SITE SELECTION			
Town	# Parcels	Stormwater Recharge (MGD)	# Parcels	Stormwater Recharge (MGD)		
Canton	34	0.16	8	0.05		
Dedham- Westwood	50	0.22	19	0.08		
Foxborough	40	0.49	23	0.31		
Medfield	18	0.05	5	.02		
Norwood	15	0.12	0	0		
Sharon	38	0.16	12	0.07		
Stoughton	89	0.31	34	0.13		
Walpole	60	0.33	15	0.07		
TOTALS:	344	1.85	116	0.73		

Optimization

Shift pumping downstream
 Shift pumping to less depleted sub-basins
 Shift pumping seasonally to less connected wells
 More opportunities than you would expect
 Many are feasible if the timeframe is long
 Some involve "bad" environmental tradeoffs

Alternate Sources

- Very few opportunities in such a developed and depleted basin
- One good one that town was already considering anyway

Interconnections

- All systems have interconnection options
- MWRA is best option in almost all cases
- Five have existing physical interconnection
- Two would need significant new infrastructure
- Limited seasonal use could be helpful

Town	Optimization Soures		Inter- Connections	
Canton	+	X	+	
Dedham-Westwood	+	-	+	
Foxborough	-	-	-	
Medfield	+	X	-	
Sharon	X	+	+	
Stoughton	-	X	+	
Walpole	-	-	+	

Table 6.7 Summary of Mitigation and Minimization Requirements and Opportunities								
					Potential Water	Volume of UAW		Potent
		Presumed 2030	Mitigation	Minimization	Conservation	>10% Included	Potential Sewer	Stormw
	Current Use	Request	Volume at	Volume at	Credit, (MAPC	in MAPC 2030	Infiltration Credit	Credit
	(MAPC 2009-	(DCR 65/10	Presumed	Presumed	2030 Cons.	Conservation	(80% of 5-year	Priority \$
Community	2012, MGD)	WNF MGD)	Request (MGD)	Request (MGD)	Scenario, MGD)	Scenario (MGD)	removal, MGD)	Only (M
Canton	2.33	2.56	2.18	0.38	0.21	0.07	0.15	0.15
DWWD*	3.86	4.62	0	4.62	0.67	0.55	0.46	0.21(
Foxborough	1.80	1.95	0	1.95	0.1	0.06	0.00	0.49
Medfield*	1.26	1.46	0	1.46	0.07	0.19	n/d	0.054
Norwood**	n/a	n/a	n/a	n/a	n/a	n/a	0.15	0.12
Sharon	1.31	1.55	0	1.55	0.28	0.05	0.00	0.16
Stoughton	1.87	2.77	0.51	2.26	0.99	0.04	0.12	0.31
Walpole	2.05	2.07	0	2.07	0	0.00	0.23	0.32

Key "Takeaways"

- Community involvement and education will be necessary for compliance
- Most communities in Neponset will be able to comply with incremental changes
- Regional planning efforts and tools like the MAPC demand forecasting tool will allow communities to test their own scenarios

Key "Takeaways" (continued)

- Efficiency gains could more than offset demand growth in Neponset
- I/I represents a potentially significant volume of water (7 – 12% of current use)
- Potential stormwater recharge credits represent
 5 12% of current use
- Optimization and interconnection options exist but some may require more regional cooperation

SUMMARY

For SWMI information: www.mass.gov/dep/water/resources/swmi.htm

For copies of the report: http://www.neponset.org/

For copies of the demand forecasting tool: http://www.mapc.org/

QUESTIONS