A RESILIENT ENERGY VISION FOR THE EAST SHORE OF STATEN ISLAND

June 29th, 2016

Part 1: Introduction to the Project Team

Part 2: Description of Staten Island East Shore

- □ Physical location and issues
- □ Electrical grid location and issues

Part 3: Proposed Concept for the Staten Island East Shore

- □ Facilities involved
- □ Technologies proposed
- □ Infrastructure upgrades proposed

Part 4: Cost and Benefits Analysis

□ Explanation of results

Part 5: Potential Project Structure for Implementation

□ Look-ahead to potential project development needs

Part 1: Introduction to the Project Team

- Part 2: Description of Staten Island East Shore
- □ Physical location and issues
- ☐ Electrical grid location and issues
- Part 3: Proposed Concept for the Staten Island East Shore
- □ Facilities involved
- □ Technologies proposed
- ☐ Infrastructure upgrades proposed
- Part 4: Cost and Benefits Analysis
- Explanation of results
- Part 5: Potential Project Structure for Implementation
- □ Look-ahead to potential project development needs

Agenda

The Stage I Analysis and Sponsor Team

- One of the nation's largest healthcare systems
- Cares for people at every stage of life at 21 hospitals and about 450 outpatient physician practices throughout the NY Metropolitan area
- Founded in 1861 as the Smith Infirmary, Staten Island University Hospital (SIUH) is one of the nation's oldest healthcare institutions
- Energy Infrastructure Developer
- Large projects in State of NY (>\$3 Billion)
- Dedicated to renewables transmission and microgrids
- Founded in 1953, one of the world's foremost consulting engineering firms
- Extensive planning and permitting experience on Staten Island
- Retained by the Governor's Office of Storm Recovery (GOSR) to help develop resiliency plans for Staten Island
- Multi-discipline power and energy engineering firm
- Expertise in infrastructure and utility-scale and distributed generation

Part 1: Introduction to the Project Team

Part 2: Description of Staten Island East Shore

- □ Physical location and issues
- □ Electrical grid location and issues

Part 3: Proposed Concept for the Staten Island East Shore

- □ Facilities involved
- □ Technologies proposed
- ☐ Infrastructure upgrades proposed
- Part 4: Cost and Benefits Analysis
- Explanation of results
- Part 5: Potential Project Structure for Implementation
- □ Look-ahead to potential project development needs

Agenda

Key causes of damage from Superstorm Sandy

Con Edison – Seaside Substation

- Con Edison typical distribution circuits are networked; fed from both ends from separate substations
- Seaside substation (33kV) in area is one of a very few in system that have "radial" distribution feeders; they are fed from a single end

Radial feeders are inherently more prone to outages and are not

"self-healing"

Electrical Distrib. Network

• Grid Repairs Post-Sandy

Community Vision for Staten Island: ISLAND / INFRASTRUCTURE

Staten Island Community Infrastructure Assets At Risk

Staten Island University Hospital – Critical Facility in a Critical Community

One of three Microgrid Proposed Projects Under NY Rising

One of three Microgrid Proposed Projects Under NY Rising

- Part 1: Introduction to the Project Team
- Part 2: Description of Staten Island East Shore
- □ Physical location and issues
- ☐ Electrical grid location and issues

Part 3: Proposed Concept for the Staten Island East Shore

- □ Facilities involved
- □ Technologies proposed
- □ Infrastructure upgrades proposed
- Part 4: Cost and Benefits Analysis
- Explanation of results
- Part 5: Potential Project Structure for Implementation
- □ Look-ahead to potential project development needs

The Proposed Concept:

SIUH Campus Distributed Generators

The Proposed Concept:

OMH South
Beach
Campus
Facilities

Part 1: Introduction to the Project Team

Part 2: Description of Staten Island East Shore

- □ Physical location and issues
- ☐ Electrical grid location and issues

Part 3: Proposed Concept for the Staten Island East Shore

- □ Facilities involved
- □ Technologies proposed
- Infrastructure upgrades proposed

Part 4: Cost and Benefits Analysis

- □ Explanation of results
- Part 5: Potential Project Structure for Implementation
- □ Look-ahead to potential project development needs

Agenda

\$700,000,000 ■ Major Power Outage Benefits ■ Avoided Emissions Damages \$600,000,000 ■ Avoided Emissions Allowance Costs ■ Power Quality Improvements ■ Reliability Improvements \$500,000,000 ■ Distribution Capacity Cost Savings ■ Generation Capacity Cost Savings \$400,000,000 ■ Fuel Savings from CHP ■ Reduction in Generating Costs \$300,000,000 ■ Emissions Damages (Grid-Connected Mode) ■ Emissions Allowance Costs Emission Control Costs \$200,000,000 Fuel Costs (Grid-Connected Mode) ■ Variable O&M Costs (Grid-Connected Mode) \$100,000,000 Fixed O&M Costs ■ Capital Investments \$0 ■ Initial Design and Planning Costs Benefits Costs

Benefits and Costs

Benefit:Cost Ratio of 3.6

Benefits and Costs:

IEc Breakdown

COST OR BENEFIT CATEGORY	PRESENT VALUE OVER 20 YEARS (2014\$)	ANNUALIZED VALUE (2014\$)
Costs		
Initial Design and Planning	\$1,000,000	\$88,200
Capital Investments	\$36,400,000	\$2,930,000
Fixed O&M	\$5,670,000	\$500,000
Variable O&M (Grid-Connected Mode)	\$20,400,000	\$1,800,000
Fuel (Grid-Connected Mode)	\$42,300,000	\$3,730,000
Emission Control	\$3,310,000	\$292,000
Emissions Allowances	\$4,020	\$355
Emissions Damages (Grid-Connected Mode)	\$62,600,000	\$4,090,000
Total Costs	\$172,000,000	
Benefits		
Reduction in Generating Costs	\$44,400,000	\$3,910,000
Fuel Savings from CHP	\$4,260,000	\$376,000
Generation Capacity Cost Savings	\$25,300,000	\$2,230,000
Distribution Capacity Cost Savings	\$26,100,000	\$2,310,000
Reliability Improvements	\$813,000	\$71,800
Power Quality Improvements	\$469,000,000	\$41,300,000
Avoided Emissions Allowance Costs	\$24,400	\$2,150
Avoided Emissions Damages	\$39,800,000	\$2,600,000
Major Power Outage Benefits	\$0	\$0
Total Benefits	\$609,000,000	
Net Benefits	\$438,000,000	
Benefit/Cost Ratio	3.6	
Internal Rate of Return	N/A	

Part 1: Introduction to the Project Team Part 2: Description of Staten Island East Shore □ Physical location and issues □ Electrical grid location and issues Part 3: Proposed Concept for the Staten Island East Shore ☐ Facilities involved □ Technologies proposed ■ Infrastructure upgrades proposed Part 4: Cost and Benefits Analysis **■** Explanation of results Part 5: Potential Project Structure for Implementation

□ Look-ahead to potential project development needs

Confidential

Agenda

Business Model Going Forward

Potential Recovery of Capital Costs

- CHP supply to OMH under retail Power and Thermal Sales Agreements
- Peaking generation capacity under regional capacity supply contract with local utility (similar to LIPA procurement in Long Island South Fork and the Western Nassau load area)
- Infrastructure improvements recovered through agreed-upon development coordination between Con Edison and microgrid developer

Potential Business Models

- Private microgrid developer to EPC the construction of all microgrid generation and control facilities
- Developer owns, operates and sells CHP energy to host and thermal energy (when dispatched) to utility
- Depending on results of further commercial due diligence, developer may also purchase existing CHP facility at SIUH and include in the portfolio
- Commercial discussions between Con Edison and developer need to take place to determine business structure around generation and infrastructure improvements (grid upgrades, switching) – who makes the infrastructure modifications, how are parties compensated

Business Model Going Forward