
Transportation + Health How Transportation Infrastructure Impacts Health

NOÉMIE SPORTICHE, MAPC PETER JAMES, HARVARD T.H. CHAN SCHOOL OF PUBLIC HEALTH

Adapted from Cole et al. 2008

Public Transit is a Health Resource

- Free Time 1
- Physical Activity 1
- Access to Health Care 1
- Disposable Income 🕇
- Air Pollution 🗼
- Accidents 🕹
- Noise 🌡

Examples of Health Costs Attributed to Changes in Public Transit Funding and Service

Annual Impact	Scenario Cost
Cost of additional time in traffic	\$137.5 million
Cost of additional fuel burned	\$22.7 million
Cost of additional car crashes, including crashes with bicycles and pedestrians	\$33.6 million
Cost of additional mortality and hospitalizations for asthma, chronic lung disease, heart attacks, heart disease, and major cardiovascular events due to air pollution	\$1.5 million
Cost of lives lost due to decreased physical activity	\$74.9 million
Cost of carbon emissions	\$1.9 million
Total annual cost	\$272.1 million

Example derived from MAPC MBTA HIA

Methodology: Numbers Shifting from Transit to Cars

- In order to estimate the number of individuals switching from transit to driving:
 - Difference between the number of daily transit trips that currently take place and those that would occur under modeled transportation scenario
- We assumed, in consultation with CTPS, that each weekday transit rider completes two trips per day (i.e., to and from work) and that 95% of individuals shifting from transit would instead drive under the proposed scenarios

Time Spent in Traffic: New drivers will slow traffic for everyone		
	SCENARIO	
People who Shift from Transit to Driving per Year	30,400	
Additional Time Driving per Year	18,500 hours (770 days)	
Annual Cost of Wasted Time	\$137.5 million	

More time in traffic creates stress and leaves less time for healthy activities, such as exercising or cooking.

Methodology: Air Pollution

- More car exhaust produces air pollution, leading to increases in asthma, chronic lung disease, heart attacks, heart disease, and major cardiovascular events.
- CTPS modeled emissions using EPA's MOBILE 6.2 software, which takes VMT and travel speeds to estimate air pollution emissions
- Models gave emissions estimates for Particulate Matter smaller than 2.5 microns in aerodynamic diameter (PM_{2.5}) and NO_x
- We then used an EPA Source-Receptor Matrix to convert emissions data into concentrations of air pollution at the county level

Methodology: Air Pollution

• Population data by county were taken from the US Census

- Hospitalization rates for asthma, cardiovascular disease, myocardial infarction, COPD, and ischemic heart disease were taken from Massachusetts Community Health Information Profile (MassCHIP) while mortality rates came from the CDC Wonder Database
- Concentration-Response Function for PM_{2.5} and NO_x were taken from EPA's Environmental Benefits Mapping and Analysis Program (BenMAP)

Methodology: Air Pollution

• The value of statistical life (VSL) of \$8.32 million in 2012 USD was used to monetize mortality endpoints

BenMAP includes costs for hospitalizations, which includes

• the cost of illness to society, which includes the total medical costs plus the value of the lost productivity

• the willingness to pay of the individual, as well as that of others, to avoid the pain and suffering resulting from the illness

Air Pollution: More cars mean less healthy air		
	SCENARIO	
Deaths Caused by Worse Air Quality per Year	0.18	
Hospitalizations Caused by Worse Air Quality per Year	0.17	
Annual Cost of Exposure to Additional Air Pollution	\$1.5 million	

More car exhaust produces air pollution, leading to increases in asthma, chronic lung disease, heart attacks, heart disease, and major cardiovascular events. "Near roadway" pollution will have additional impacts not quantified here.

Methodology: Physical Activity and Obesity

- Regular physical activity not only prevents obesity, it helps control blood pressure and blood sugar, increases strength and flexibility, and is good for mental health
- Use estimate of how many people would switch from transit to driving from CTPS data
- US DOT and FHWA National Household Travel Survey data indicates that transit users partake in 8.3 additional minutes of daily walking per day
- This amount of daily walking can prevent 0.25% of the population from becoming obese

Methodology: Physical Activity and Mortality

- Health Economic Assessment Tool (HEAT) from the World Health Organization (WHO)
 - Developed by WHO with the guidance of an advisory group of international experts in heath, epidemiology, health economics, transport economics, practice/advocacy, and policy development and implementation
 - Based on systematic reviews of the epidemiologic literature, this tool allows one to estimate changes in mortality based on population-level changes in physical activity
 - We used our CTPS-based estimate on those that would shift to driving and simulated an intervention using the HEAT Tool where 30,000 people would walk 8 minutes less 5 days a week

Physical Activity: Taking transit gets you up and walking

	SCENARIO	
Lost Physical Activity	250,000 minutes per day	
Lost Caloric Expenditure	8.2 million per day	
Additional Cases of Obesity Caused by Sedentary Behavior per Year	70	
Additional Deaths Caused by Sedentary Behavior per Year	9	
Annual Cost of Lost Physical Activity	\$75 million	

Regular physical activity not only prevents obesity, it helps control blood pressure and blood sugar, increases strength and flexibility, and is good for mental health.

Health-Related Outcomes Associated with Speed Limits

Collisions, Injuries, and Fatalities

Pedestrian and Bicyclist Perceptions of Access and Safety

Parental Safety Perceptions and Children's Levels of Physical Activity

Residential Property Values

Time Spent and Fuel Burned in Traffic

Air Pollution

Assessment Methods

- Input for much of the quantitative estimates:
 - A 5 mph decrease in the speed limit would translate to a 1.8 mph decrease in average traffic speeds under free flow*
 - Based on a meta-analysis examining many traffic studies, which found a non-linear relationship between the effect of speed limits on actual speeds

*Elvik, R. 2012. "Speed Limits, Enforcement, and Health Consequences." *Annual Review of Public Health* 33 (April): 225–238. doi:10.1146/annurev-publhealth-031811-124634.

Collisions, Injuries, and Fatalities

- Used GIS to link 2006-2009 RMV data on crashes to local roads
- Used the Power Model from Elvik 2009*, a method from a meta-analysis of 115 traffic studies, to estimate the impact of reducing traffic speeds on local roads by 1.8 mph on safety outcomes

*Elvik, R. 2009. "The Power Model of the Relationship Between Speed and Road Safety: Update and New Analyses" (1034/2009) (October). http://trid.trb.org/view/2009/M/1150311.

Collisions, Injuries, and Fatalities

Estimated Annual Decrease based on a 1.8 MPH speed reduction

Total Crashes	2,219	
Fatal Crashes	15	
Injury Crashes	772	
Fatalities	18	
Injured Road Users	1,239	
Pedestrian Fatalities	4	
Cyclist Fatalities	1	
Injured Pedestrians	50	
Injured Cyclists	33	
Note: These numbers should not be summed across types of crashes/health outcomes. Some		

Note: These numbers should not be summed across types of crashes/health outcomes. Some categories are subsets of other categories

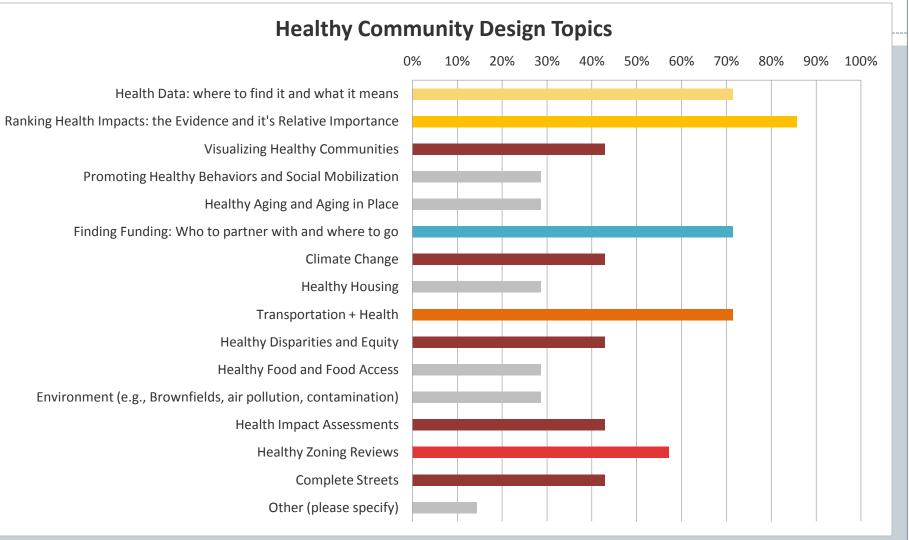
Modeling results predict that the reducing speed limits 5 mph would decrease fatalities and injuries by lessening the risk and severity of motor vehicle collisions

Costs of Crashes

	Fatalities	Pedestrian Fatalities	Cyclist Fatalities
Annual Decrease in			
Deaths	18	4	1
Medical Cost			
Avoided	\$346,721	\$76,699	\$18,912
Work Loss Cost			
Avoided	\$29,347,334	\$6,521,513	\$1,630,641
Combined Cost			
Savings	\$29,694,055	\$6,598,212	\$1,649,553

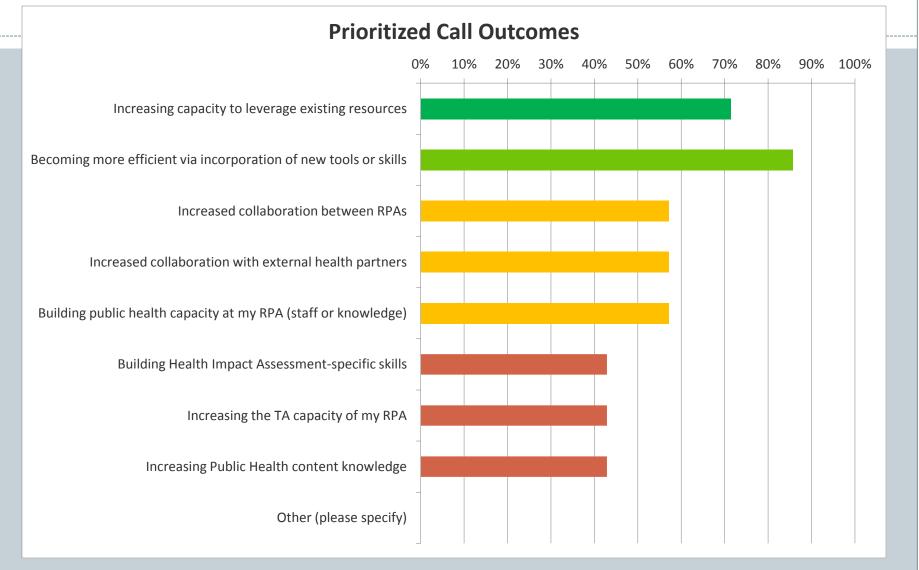
We used the CDC Web-based Injury Statistics Query and Reporting System (WISQARS) Cost of Injury Reports application to analyze the cost savings that would result from the collision reductions reported above

Costs of Crashes			
	Injured Road Users	Injured Pedestrians	Injured Cyclists
Annual Decrease in			
Number			
Hospitalized	1,239	50	33
Medical Cost			
Avoided	\$63,872,373	\$2,703,376	\$1,652,705
Work Loss Cost			
Avoided	\$116,610,789	\$5,164,047	\$3,766,654
Combined Cost			
Savings	\$180,483,163	\$7,867,423	\$5,419,359


Decreases in fatalities and injuries would mean financial savings: up to \$30 million for fatalities prevented and \$180 million for injuries prevented in costs to society due to medical payments and missed work

Examples of Transportation + Health Tools

- **HEAT**, Health Economic Assessment Tool from the World Health Organization (WHO)
- **PEQI**, Pedestrian Environmental Quality Index
- The "Power Model" for collisions
- **WISQARS**, Web-based Injury Statistics Query and reporting system for costs of collisions


Survey Results

A Reminder of our Next Topics

- Visualizing healthy communities
- Ranking health impacts: relative importance and why it matters
- Health data: where to find it and why it matters
- A discussion of tools (e.g. HIA, healthy zoning reviews)
- Finding funding

Prioritized Call Outcomes

Thank you!

QUESTIONS?